Rabu, 12 Januari 2022

Threads dan Processes

Nama : Kasnadi

Npm : 21312070

Kelas : IF 21B


definisi dan perbedaan antara Threads dan Processes. 


Thread

Thread merupakan unit dasar dari penggunaan CPU, yang terdiri dari Thread_ID, program counter, register set, dan stack. Sebuah thread berbagi code section, data section, dan sumber daya sistem operasi dengan Thread lain yang dimiliki oleh proses yang sama. Thread juga sering disebut lightweight process. 

Sebuah proses tradisional atau heavyweight process mempunyai thread tunggal yang berfungsi sebagai pengendali. Banyak sistem operasi modern telah memiliki konsep yang dikembangkan agar memungkinkan sebuah proses untuk memiliki eksekusi multithreads, agar dapat secara terus menerus mengetik dan menjalankan pemeriksaan ejaan didalam proses yang sama, maka sistem operasi tersebut memungkinkan proses untuk menjalankan lebih dari satu tugas pada satu waktu. 


Thread saling berbagi bagian program, bagian data, dan sumber daya sistem operasi dengan thread lain yang mengacu pada proses yang sama. Thread terdiri atas ID thread, program counter, himpunan register, dan stack sehingga dengan banyaknya kontrol thread, proses dapat melakukan lebih dari satu pekerjaan pada waktu yang sama. 


Proses 

Secara informal, proses adalah program dalam eksekusi. Suatu proses adalah lebih dari kode program, dimana kadang kala dikenal sebagai bagian tulisan. Proses juga termasuk aktivitas yang sedang terjadi, sebagaimana digambarkan oleh nilai pada program counter dan isi dari daftar prosesor/processor's register. Suatu proses umumnya juga termasuk process stack, yang berisikan data temporer (seperti parameter metoda, address yang kembali, dan variabel lokal) dan sebuah data section, yang berisikan variabel global. 


Program itu sendiri bukanlah sebuah proses, suatu program adalah satu entitas pasif seperti isi dari sebuah berkas yang disimpan didalam disket, sebagaimana sebuah proses dalam suatu entitas aktif dengan sebuah program counter yang mengkhususkan pada instruksi selanjutnya untuk dijalankan dan seperangkat sumber daya/resource yang berkenaan dengannya. 


Walau dua proses dapat dihubungkan dengan program yang sama, program tersebut dianggap dua urutan eksekusi yang berbeda. Sebagai contoh, beberapa pengguna dapat menjalankan copy yang berbeda pada mail program, atau pengguna yang sama dapat meminta banyak copy dari program editor. 


Tiap-tiap proses ini adakah proses yang berbeda dan walau bagian tulisan-text adalah sama, data section bervariasi. Dalam SO, juga umum untuk memiliki proses yang menghasilkan banyak proses begitu ia bekerja. 

Sebagaimana proses bekerja, maka proses tersebut merubah state (keadaan statis/ asal). Status dari sebuah proses didefinisikan dalam bagian oleh aktivitas yang ada dari proses tersebut. Tiap proses mungkin adalah satu dari keadaan berikut ini: 


1. New. Proses sedang dikerjakan/ dibuat. 

2. Running: Instruksi sedang dikerjakan. 

3. Waiting: Proses sedang menunggu sejumlah kejadian untuk terjadi (seperti sebuah penyelesaian I/O atau penerimaan sebuah tanda/ signal). 

4. Ready. Proses sedang menunggu untuk ditugaskan pada sebuah prosesor. 

5. Terminated: Proses telah selsesai melaksanakan tugasnya/ mengeksekusi. 


Perbedaan antara proses dengan thread tunggal dengan proses dengan thread yang banyak (Multi thread) adalah proses dengan thread yang banyak dapat mengerjakan lebih dari satu tugas pada satu satuan waktu.



Jumat, 07 Januari 2022

Multiple Processor Organizatio

Nama : Kasnadi

Npm : 21312070

Kelas : IF 21B


Single Instruction Stream Multiple Data Stream (SIMD)


SIMD adalah satu unit kontrol yang mengeksekusi aliran tunggal instruksi, tetapi lebih dari satu elemen pemroses. Mesin SIMD secara umum mempunyai karakteristik sbb:
  • Mendistribusi proses ke sejumlah besar hardware 
  • Beroperasi terhadap berbagai elemen data yang berbeda 
  • Melaksanakan komputasi yang sama terhadap semua elemen data

Peningkatan kecepatan pada SIMD proporsional dengan jumlah hardware (elemen pemroses) yang tersedia. SIMD bertugas untuk menyesuaikan kontras dalam citra digital atau menyesuaikan volume audio digital. Desain CPU modern termasuk instruksi SIMD dalam rangka meningkatkan kinerja multimedia yang digunakan.

Keuntungan SIMD
  • Keuntungan SIMD antara lain sebuah aplikasi adalah salah satu dimana nilai yang sama sedang ditambahkan ke (atau dikurangkan dari) sejumlah besar titik data, operasi umum di banyak multimedia aplikasi. Salah satu contoh akan mengubah kecerahan gambar. Setiap pixel dari suatu gambar terdiri dari tiga nilai untuk kecerahan warna merah (R), hijau (G) dan biru (B) bagian warna. Untuk mengubah kecerahan, nilai-nilai R, G dan B yang dibaca dari memori, nilai yang ditambahkan dengan (atau dikurangi dari) mereka, dan nilai-nilai yang dihasilkan ditulis kembali ke memori. 
  • Dengan prosesor SIMD ada dua perbaikan proses ini. Untuk satu data dipahami dalam bentuk balok, dan sejumlah nilai-nilai dapat dimuat sekaligus. Alih-alih serangkaian instruksi mengatakan “mendapatkan pixel ini, sekarang mendapatkan pixel berikutnya”, prosesor SIMD akan memiliki instruksi tunggal yang efektif mengatakan “mendapatkan n piksel” (dimana n adalah angka yang bervariasi dari desain untuk desain). Untuk berbagai alasan, ini bisa memakan waktu lebih sedikit daripada “mendapatkan” setiap pixel secara individual, seperti desain CPU tradisional. 
  • Keuntungan lain adalah bahwa sistem SIMD biasanya hanya menyertakan instruksi yang dapat diterapkan pada semua data dalam satu operasi. Dengan kata lain, jika sistem SIMD bekerja dengan memuat delapan titik data sekaligus, add operasi yang diterapkan pada data akan terjadi pada semua delapan nilai pada waktu yang sama. Meskipun sama berlaku untuk setiap desain prosesor super-skalar, tingkat paralelisme dalam sistem SIMD biasanya jauh lebih tinggi.

Kekurangan SIMD
  1. Tidak semua algoritma dapat vectorized. Misalnya, tugas aliran-kontrol-berat seperti kode parsing tidak akan mendapat manfaat dari SIMD.
  2. Ia juga memiliki file-file register besar yang meningkatkan konsumsi daya dan area chip.
  3. Saat ini, menerapkan algoritma dengan instruksi SIMD biasanya membutuhkan tenaga manusia, sebagian besar kompiler tidak menghasilkan instruksi SIMD dari khas Program C, misalnya vektorisasi dalam kompiler merupakan daerah aktif penelitian ilmu komputer.
  4. Pemrograman dengan khusus SIMD set instruksi dapat melibatkan berbagai tantangan tingkat rendah.
  5. SSE (Streaming SIMD Ekstensi) memiliki pembatasan data alignment, programmer akrab dengan arsitektur x86 mungkin tidak mengharapkan ini.
  6. Mengumpulkan data ke dalam register SIMD dan hamburan itu ke lokasi tujuan yang benar adalah rumit dan dapat menjadi tidak efisien.
  7. Instruksi tertentu seperti rotasi atau penambahan tiga operan tidak tersedia dalam beberapa set instruksi SIMD.
  8. Set instruksi adalah arsitektur-spesifik: prosesor lama dan prosesor non-x86 kekurangan SSE seluruhnya, misalnya, jadi programmer harus menyediakan implementasi non-Vectorized (atau implementasi vectorized berbeda) untuk mereka.
  9. Awal MMX set instruksi berbagi register file dengan tumpukan floating-point, yang menyebabkan inefisiensi saat pencampuran kode floating-point dan MMX. Namun, SSE2 mengoreksi ini.
SIMD dibagi menjadi beberapa bentuk lagi yaitu :
  • Exclusive-Read, Exclusive-Write (EREW) SM SIMD 
  • Concurent-Read, Exclusive-Write (CREW) SM SIMD 
  • Exclusive-Read, Concurrent-Write (ERCW) SM SIMD 
  • Concurrent-Read, Concurrent-Write (CRCW) SM SIMD

Sejarah, Definisi dan Cara Kerja Algoritma Divide and Conquer.

Nama : Kasnadi NPM :21312070 Sejarah Algoritma Devide dan Conquer Awal dari algoritma ini utamanya adalah pengurangan dan penaklukan - masal...