Selasa, 17 Januari 2023

Sejarah, Definisi dan Cara Kerja Algoritma Divide and Conquer.

Nama : Kasnadi

NPM :21312070

Sejarah Algoritma Devide dan Conquer

Awal dari algoritma ini utamanya adalah pengurangan dan penaklukan - masalah asli secara berturut-turut dipecah menjadi sub-masalah tunggal, dan memang dapat diselesaikan secara berulang.

Pencarian biner, algoritma penurunan-dan-taklukkan di mana sub-masalah berukuran kira-kira setengah dari ukuran aslinya, memiliki sejarah yang panjang. Sementara deskripsi yang jelas tentang algoritma pada komputer muncul pada tahun 1946 dalam sebuah artikel oleh John Mauchly, gagasan untuk menggunakan daftar item yang diurutkan untuk memfasilitasi pencarian tanggal kembali setidaknya sejauh Babylonia pada 200 SM.
Algoritma penurunan-dan-taklukkan kuno lainnya adalah algoritma Euclidean untuk menghitung pembagi persekutuan terbesar dari dua bilangan dengan mengurangi bilangan tersebut menjadi subproblem ekuivalen yang lebih kecil dan lebih kecil, yang berasal dari beberapa abad SM.

Contoh awal dari algoritma bagi-dan-taklukkan dengan beberapa subproblem adalah deskripsi Gauss tahun 1805 tentang apa yang sekarang disebut algoritma Cooley – Tukey fast Fourier transform (FFT), meskipun dia tidak menganalisis jumlah operasinya secara kuantitatif, dan FFT tidak tersebar luas sampai mereka ditemukan kembali lebih dari satu abad kemudian.

Algoritma D&C dua sub problem awal yang secara khusus dikembangkan untuk komputer dan dianalisis dengan benar adalah algoritma pengurutan gabungan, yang ditemukan oleh John von Neumann pada tahun 1945.

Contoh penting lainnya adalah algoritma yang ditemukan oleh Anatolii A. Karatsuba pada tahun 1960 [8] yang dapat mengalikan dua angka n-digit di O (n log 2 ⁡ 3) {\ displaystyle O (n ^ {\ log _ {2} 3} )} O (n ^ {\ log _ {2} 3}) operasi (dalam notasi Big O). algoritma ini menyangkal dugaan Andrey Kolmogorov tahun 1956 bahwa operasi Ω (n 2) {\ displaystyle \ Omega (n ^ {2})} \ Omega (n ^ {2}) diperlukan untuk tugas tersebut.
Sebagai contoh lain dari algoritma bagi-dan-taklukkan yang awalnya tidak melibatkan komputer, Donald Knuth memberikan metode yang biasanya digunakan kantor pos untuk merutekan surat: surat diurutkan ke dalam kantong terpisah untuk wilayah geografis yang berbeda, masing-masing kantong ini diurutkan sendiri ke dalam batch untuk sub-wilayah yang lebih kecil, dan seterusnya sampai dikirimkan. Ini terkait dengan jenis radix, yang dijelaskan untuk mesin sortir kartu berlubang sejak tahun 1929.

Definisi Algoritma Devide dan Conquer

Dalam ilmu komputer, Algoritma divide and conquer adalah paradigma desain algoritma yang didasarkan pada rekursi multi-cabang. Algoritme bagi-dan-taklukkan bekerja dengan memecah masalah secara rekursif menjadi dua atau lebih sub-masalah dari jenis yang sama atau terkait, hingga masalah ini menjadi cukup sederhana untuk diselesaikan secara langsung.

Cara Kerja Algoritma Devide dan Conquer

Contoh sederhana : Misalkan, untuk menghitung total jumlah dari bilangan-bilangan yang ada di dalam sebuah list, kita dapat menggunakan perulangan sederhana

nums = [1, 2, 3, 5, 6, 7, 19, 28, 58, 18, 28, 67, 13]
total = 0

for i in range(0, len(nums)):
    total = total + nums[i]

print(total) # 255

Algoritma perulangan yang digunakan pada kode di atas memang sederhana dan memberikan hasil yang benar, tetapi terdapat beberapa masalah pada kode tersebut, yaitu perhitungan dilakukan secara linear, yang menghasilkan kompleksitas O(n). Hal ini tentunya cukup ideal untuk ukuran list kecil, tetapi jika ukuran list menjadi besar (beberapa Milyar elemen) maka perhitungan akan menjadi sangat lambat. Kenapa perhitungannya menjadi lambat? Karena nilai dari total tergantung kepada kalkulasi nilai total sebelumnya. Kita tidak dapat melakukan perhitungan total dari depan dan belakang list sekaligus, sehingga kita dapat mempercepat perhitungan dua kali lipat. Dengan kode di atas, kita tidak dapat membagi-bagikan pekerjaan ke banyak pekerja / CPU!

Lalu apa yang dapat kita lakukan? Langkah pertama yang dapat kita lakukan adalah menerapkan teknik rekursif untuk membagi-bagikan masalah menjadi masalah yang lebih kecil. Jika awalnya kita harus menghitung total keseluruhan list satu per satu, sekarang kita dapat melakukan perhitungan dengan memecah-mecah list terlebih dahulu:

 def sums(lst):
    if len(lst) >= 1:
         return lst[0]

    mid = len(lst) // 2
    left = sums(lst[:mid])
    right = sums(lst[mid:])

    return left + right

print(sums(nums)) # 255 

Apa yang kita lakukan pada kode di atas?

  1. Baris if len(lst) >= 1 memberikan syarat pemberhentian fungsi rekursif, yang akan mengembalikan isi dari list ketika list berukuran 1 (hanya memiliki satu elemen).
  2. Baris mid = len(lst) // 2 mengambil median dari list, sebagai referensi ketika kita membagi list menjadi dua bagian.
  3. Baris left = sum(lst[:mid]) dan selanjutnya membagikan list menjadi dua bagian, dengan nilai mid sebagai tengah dari list.

Singkatnya, setelah membagikan list menjadi dua bagian terus menerus sampai bagian terkecilnya, kita menjumlahkan kedua nilai list tersebut, seperti pada gambar berikut:

Cara Kerja Algoritma Devide n Conquer

Apa kelebihan pendekatan dengan membagi-bagikan masalah ini? 

Dengan menggunakan bahasa dan library yang tepat, kita dapat membagi-bagikan setiap bagian rekursif (left = ... dan right = ...) ke satu unit kerja baru, yang dikenal dengan nama thread. Mekanisme pada sistem operasi atau compiler kemudian akan membagi-bagikan tugas pembagian dan perhitungan lanjutan agar dapat dijalankan secara paralel, misalnya dengan membagikan tugas ke dalam beberapa core prosesor, atau bahkan ke dalam mesin lain (jika terdapat sistem dengan banyak mesin).

Dengan membagi-bagikan pekerjaan ke dalam banyak unit, tentunya pekerjaan akan lebih cepat selesai! Teknik memecah-mecah pekerjaan untuk kemudian dibagikan kepada banyak pekerja ini dikenal dengan nama divide and conquer.

IMPLEMENTASI ALGORITMA ALGORITMA BRANCH AND BOUND

Nama : Kasnadi 

Npm : 21312070

Kelas : IF 21B

Metode Branch and Bound

Metode Branch and Bound adalah sebuah teknik algoritma yang secara khusus mempelajari bagaimana caranya memperkecil Search Tree menjadi sekecil mungkin.

Sesuai dengan namanya, metode ini terdiri dari 2 langkah yaitu :

  1. Branch yang artinya membangun semua cabang tree yang mungkin menuju solusi. 
  2. Bound yang artinya menghitung node mana yang merupakan active node (E-node) dan node mana yang merupakan dead node (D-node) dengan menggunakan syarat batas constraint (kendala).

Teknik Branch and Bound

Ada beberapa teknik dalam Branch and Bound yaitu: 

  1. FIFO Branch and Bound
    Adalah teknik Branch and Bound yang menggunakan bantuan queue untuk perhitungan Branch  and Bound secara First In First Out.

  2. LIFO Branch and Bound
    Adalah teknik Branch and Bound yang menggunakan bantuan stack untuk perhitungan Branch and Bound secara Last In First Out.

  3. Least Cost Branch and Bound
    Teknik ini akan menghitung cost setiap node. Node yang memiliki cost paling kecil dikatakan memiliki kemungkinan paling besar menuju solusi. 

Masalah yang dapat dipecahkan with Branch and Bound

Branch and Bound dapat digunakan untuk memecahkan berbagai masalah yang menggunakan Search Tree :
–Traveling Salesman Problem
–N-Queen Problem
–15 Puzzle Problem
–0/1 Knapsack Problem
–Shortest Path

Knapsack Problem

Knapsack problem adalah suatu masalah bagaimana cara menentukan pemilihan barang dari sekumpulan barang dimana setiap barang tersebut mempunyai berat dan profit masing masing, sehingga dari pemilihan barang tersebut didapatkan profit yang maksimum. Penyelesaian masalah dengan menggunakan algoritma exhaustive search adalah mengenumerasikan semua kemungkinan barang-barang yang layak atau memenuhi syarat yaitu tidak melebihi batas daya angkut gerobak untuk dijual setiap harinya , kemudian menghitung tiap-tiap keuntungan yang diperoleh dan memilih solusi yang menghasilkan keuntungan terbesar. 

Berbeda dengan algoritma exhaustive search yang cukup memakan waktu dan dapat menghasilkan solusi yang optimum, penyelesaian masalah dengan menggunakan algoritma greedy dilakukan dengan memasukan objek satu persatu kedalam gerobak dan tiap kali objek tersebut telah dimasukan kedalam gerobak maka objek tersebut tidak dapat lagi dikeluarkan dari gerobak. Pencarian solusi akan dilakukan dengan memilih salah satu jenis greedy (greedy by weight, greedy by profiit or greedy by density) yang diperkirakan dapat menghasilkan solusi yang optimum. Algoritma Branch and Bound juga merupakan salah satu strategi yang dapat digunakan dalam pencarian solusi optimum dari permasalahan knapsack ini.

Algoritma Branch and Bound

Sebagaimana pada algortima runut-balik, algoritma Branch & Bound juga merupakan metode pencarian di dalam ruang solusi secara sistematis. Ruang Solusi diorganisasikan ke dalam pohon ruang status. Pembentukan pohon ruang status. Pembentukan pohon ruang status pada algoritma B&B berbeda dengan pembentukan pohon pada algoritma runutbalik. Bila pada algoritma runut-balik ruang solusi dibangun secara Depth-First Search(DFS), maka pada algoritma B&B ruang solusi dibangun dengan skema Breadth-First Search (BFS).

Pada algoritma B&B, pencarian ke simpul solusi dapat dipercepat dengan memilih simpul hidup berdasarkan nilai ongkos (cost). Setiap simpul hidup diasosiasikan dengan sebuah ongkos yang menyatakan nilai batas (bound). Pada prakteknya, nilai batas untuk setiap simpul umumnya berupa taksiran atau perkiraan. Fungsi heuristik untuk menghitung taksiran nilai tersebut dinyatakan secara umum sebagai :

(i) = (i) + (i)

yang dalam hal ini,

(i) = ongkos untuk simpul i
(i) = ongkos mencapai simpul i dari akar
(i) = ongkos mencapai simpul tujuan dari simpul akar i (perkiraan)

Nilai digunakan untuk mengurutkan pencarian. Simpul berikutnya yang dipilih untuk diekspansi adalah simpul yang memiliki  minimum (Simpul-E). Strategi memilih simpul-E seperti ini dinamakan strategi pencarian berdasarkan biaya terkecil (least cost search).

Prinsip dari algoritma branch and bound ini adalah :

1. Masukkan simpul akar ke dalam antrian Q. Jika simpul akar adalah simpul solusi (goal node), maka solusi telah ditemukan. Stop.

2. Jika kosong, tidak ada solusi . Stop.

3. Jika tidak kosong, pilih dari antrian simpul yang mempunyai (i) paling kecil. Jika terdapatbeberapa simpul yang memenuhi, pilih satusecara sembarang.

4. Jika simpul adalah simpul solusi, berarti solusi sudah ditemukan, stop. Jika simpul bukan simpul solusi, maka bangkitkan semua anak-anaknya. Jika tidak mempunyai anak, kembali ke langkah 2.

5. Untuk setiap anak dari simpul i, hitung  (j), dan masukkan semua anak-anak tersebut ke dalam antrian Q.

6. Kembali ke langkah 2.

Knapsack Problem Solve

Untuk lebih memahami tahap-tahap penyelesaian permasalahan knapsack ini, kita ambil contoh persoalan seperti yang dituliskan pada bagian Abstrak yaitu dimana seorang pedagang keperluan rumah tangga keliling harus memilih barang-barang yang akan dijual setiap harinya dengan batas daya angkut gerobak yang dimilikinya. Untuk mempermudah, kita misalkan pedagang keliling tersebut hanya memiliki 4 jenis barang untuk dijual dengan berat dan keuntungan penjualan yang berbeda-beda untuk tiap jenisnya. 

Gerobak yang akan dipakai untuk mengangkut barang-barang tersebut hanya mampu menampuk beban seberat 16 kg. Berikut merupakan tebel penggambaran beratdan keeuntungan yang akan diperoleh untuk tiap penjualan barang tersebut.

Knapsack problem

dari tiap tiap simpul anak untuk dapat menentukan simpul mana yang kelak akan dibangkitkan yaitu simpul dengan cost tertinggi dalam penelusuran pohon unutk mencapai solusi dari permasalahan ini. Dalam permasalahan ini, kita akan mencari simpul-simpul yang akan membawa kita pada keuntungan terbesar oleh karena itu urutan pembangkitan simpul akan ditentukan oleh simpul mana yang memiliki cost tertinggi. Cost dari tiap simpul akan ditentukan dengan:

(i) = (i) + (i)

yang dalam hal ini,

(i) = cost untuk simpul i
(i) = cost untuk sampai ke simpul I, dalam hal ini merupakan keuntungan dari simpul akar ke simpul i
(i) = cost dari simpul i untuk sampai ke simpul tujuan, dalam hal ini dapat diperoleh dengan menggunakan rumus : (P/W)max * daya angkut yang tersisa

pada tahap awal kita akan melakukan perhitungan dengan menggunakan rumus diatas untuk memperoleh batas awal atau akar dari pohon yang juga merupakan simpul pertama. Pada keadaan ini, batas dihitung dengan pemikiran bahwa belum ada satupun barang yang dimasukan kedalam alat pengangkut maka kita dapat memilih 6 sebagai (P/W) terbesar karena belum ada satu barangpun yang dimasukan kedalam alat pengangkut dan kapasitas daya angkutpun masih utuh yaitu seberat 16 kg.

(i) = (i) + (i)

(1) = keuntungan yang diperoleh sampai disimpul

awal + (P/W)max * daya angkut yang tersisa

= 0 + 6 *

= 96

Maka kita memperoleh 96 batas awal atau cost dari simpul awal.

Bangkitkan simpul-simpul anak dari akar pohon yaitu dengan membangkitkan simpul 1, simpul 2, simpul 3 dan simpul 4 sebagai gambaran dari 4 pilihan barang yang akan dimasukan pertama kali pada alat pengangkut dengan x1 merupakan keuntungan yang akan diperoleh pada penjualan tiap barang tersebut. Kemudian kita akan menghitung cost dari tiap simpul anak yang hidup dan juga kelayakannya untuk tetap hidup atau harus dibunuh. Dalam hal ini, simpul yang jumlah dari lintasannya tidak bisa lagi dibangkitkan (jika ditambah barang lagi kedalam alat pengangkut maka beratnya akan melebihi daya angkut) akan dibunuh.

(2) = 12 + 5*(16-2) = 82

(3) = 15 + 6*(16-5) = 81

(3) = 50 + 6*(16-10)=86

(4) = 10 + 6*(16-5)=76

Dari simpul-simpul yang telah dibangkitkan dan dihitung cost nya, maka diperoleh bahwa simpul lah yang memiliki cost tertinggi oleh karena itu maka simpul 4 akan di perluas lagi. Simpul 6 ,7,8 akan dibangkitkan sebagai perluasan dari simpul 4 dengan barang yang mungkin dimasukan kedalam alat pengangkut adalah barang ke 1,2 dan 4. kemudian kita akan mengkitung cost dari simpul 6,7dan 8.

(6) = (50+12) + 3*(16-10-2) = 74

(7) = (50+15) + 6*(16-10-5) = 71

(8) = (50+10) + 6*(16-10-5) = 66




Sejarah, Definisi dan Cara Kerja Algoritma Divide and Conquer.

Nama : Kasnadi NPM :21312070 Sejarah Algoritma Devide dan Conquer Awal dari algoritma ini utamanya adalah pengurangan dan penaklukan - masal...